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DPM

> Dirichlet process mixtures (DPM) (Lo, 1984) are the most popular Bayesian
nonparametric method for density estimation and probabilistic clustering

oo
ind ~id = -
Xil0i ~ k(-|6:), 60i|P~P, P= E pjééj ~ DP(c, Qo).

j=t

> Validation: one of the most popular ways to validate inferential procedure is via
frequentist properties. Consistency is a natural minimal requirement.

> Density estimation: ideal data generating truth:

X %

1

in several relevant cases and metrics, the posterior distribution concentrates at
the true data-generating density (at the minimax-optimal rate, up to a
logarithmic factor) (Ghosal et al., 1999; Ghosal & Van der Vaart, 2007).




I e ——
DPM for Probabilistic Clustering

> Obs are clustered together if they arise from the same k (e.g., Gaussian).
#£ clusters in a sample = # of occupied mixture components K, < n.

> Let 75(n) = set of unordered partitions of {1,...,n} in s non empty subsets.

» The DPM model can be rewritten with respect to the random partitions:

s
s
p(A| @)= % H(aj —1)I, A€ 7s(n) — Partition
j=1

s
p(f1s | A s,0) = H Qo(éj) — Unique parameters
j=1

s

p(Xin | O1:5, A) = H H k(X | éj) — Observations

j=1icA;
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Validation: Probabilistic Clustering

> Validation: ideal data-generating truth is a finite mixture model

t
X prk(- | 67)

j=1

> t € N is the true number of mixture components. Some mis-specification: DPM
has co components! However, DPM is often used in practice when we believe that
t € N for any n to avoid fixing an upper bound for ¢t (Miller and Harrison, 2013).

» Def: clusters = occupied mixture components. t is also the true # of clusters in
the ideal population.

More precisely, we can sample from the truth as first sampling the true clustering
memberships Z; € {1,...,t}. K¥ =# clusters := #{Z1,...,Zs}

Under the truth, K = t eventually almost surely.



Validation: Clustering Consistency under DPM

> Question: can we hope to learn the true partition?
No! Without other info (e.g., repeated measurements with the same clustering).

f*=05N(- | mean = —3,sd = 1) + 0.5 N(- | mean = 3,sd = 1)

<
s

» Question: can we learn the true t?



Related Results

> Related interesting consistency results:

P Wasserstein distance posterior consistency of the mixing distribution under general
conditions (Nguyen, 2013);

P Under over-fitted finite Dirichlet mixtures (dimension K > t) and regularity
assumptions, the additional weights can vanish or not depending on the
hyperparameters of the finite Dirichlet (Rousseau and Mengersen, 2011).

» This kind of consistency does not imply consistency for t.



Further Motivations

Understanding the posterior behavior of Kj, is useful for
> Consistency/robustenss

P As a frequentist validation of the clustering and inference for the number of
components.
P> What if? Understanding the learning and not just the prior.

> Parsimony. Having posterior behavior of Kj, such that we don't overshoot (open
too many clusters) if they are not needed to fit the data is useful for

P Computation (e.g., better efficiency and mixing of MCMC, fewer identifiability
issues).

P better estimates (more borrowing i.e., bigger clusters thus better learning and less
prior when we have enough good info).



Miller and Harrison, 2014

Consider a DPM model with fixed « and essentially any continuous kernel k().
Assuming (X1, X2,...) ~ P*(>°) such that
t
X N7 prk(-16),
j=1

then
limsupp(Kn, =t | X1.n) < 1,

in P*(°)_probability.

= inconsistency!

Recall the notation. Two probabilities:
» p is the model.

> P* is the data generating truth.



Gaussian Case

Assume k(- | 0) = N(- | 6,1).

Miller and Harrison, 2013

If P* is any distribution with finite first moment, then p(K, = 1 | Xi.,) does
not converge to 1. Even if the data are all constant.

Miller and Harrison, 2013

If X; "5 N(0,1), then:

p(Kn =1 ‘ Xl:n) — O,

as n — oo in P*(°°)_probability.




Comments

> with fixed «, we always have inconsistency.

> finer lower bounds p(K, = t | X1.n) in the DPM of Normals can be found in Yang
et al. (2023+).

> inconsistency holds also for the Pitman-Yor process (Miller and Harrison, 2014)...

> ..and the other Gibbs-type priors (De Blasi et al.) with o > 0 (Alamichel et al.,
2023+).



An important Comment

The concentration parameter plays a crucial role

«
1+a’

p(0; # 6;) =

so smaller @ = less clusters.

> Fixing a is difficult.

» Usually a prior is placed, i.e. o~ 7(+).
To have a more flexible distribution on the clustering of the data, in most
implementations of the DPM (e.g., Escobar & West 1995)

o~ — Prior for concentration parameter
the mixing measure is itself a mixture in the sense of Antoniak (1974).

» Does it change the asymptotic behavior of K,?

11/ 26



Intuition: Why Inconsistency is not Obvious from Literature

For any fixed o € R
limsupp(Kn =t | X1.n,@) < 1 (=0 Gaussian case) .

When a prior is placed

limsup p(Ky, =t | X1.n) = lim sup/p(Kn =t | Xi:p, )(a | Xi:p) de
-0

;/Iim sup p(Kp = t | Xi:n, ) m(e | X1:p) der.

> In general the limit and the integral cannot be exchanged!

» If m(a | Xi:n) concentrates around 0 we may achieve consistency.



Our result

» If m(a | Xi:n) concentrates around 0 we may achieve consistency.

Posterior of a and K}, consistency

Under mild assumptions on m, if the model is consistent for the number of

clusters we have
71'((1 | X1;,,) — 50,

weakly as n — oo, in P*(°)-probability.

> A New Hope: a priori K, ~ alog(n), therefore if the data are very close in terms
of the kernel we expect empirical-based estimator &(n) — 0 as n — oo.
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Proof Technique

We have consistency if and only if

p(Kn =S | Xl:n)

———= 30 asn—o0.
. p(Kn:t|X1:n)

#

P It suffices to work with ratios.

> Why is it useful?



———
Proof ldea

It holds

p(Kn = s | Xi:n) f (n) 7r(a) do ZAETS(n) HJ (g =1t H m(XA )

p(Kn =t l Xl:") - f Tﬂ(a) da ZBETr(n) HJ 1(bJ - 1) H m(XB
L,_/

R(n,t,s)

C(n,t,s)

» The prior 7 impact only C(n, t,s).

> If C(n,t,s) — 0, for s > t, this may help!
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The Choice of the Prior

We make the following assumptions

Al. Absolute continuity: the prior admits a density with respect to the Lebesgue
measure.

A2. Polynomial behaviour around the origin: Je¢, 6, 3 such that Va € (0, €) it holds
%aB < w(a) < 8aP.

A3.

Subfactorial moments: 3D, v, p > 0 such that f o’m(a)da < Dp~T(v+s+1)
for every s > 1.

The following choices of 7(-) satisfy assumptions Al, A2 and A3:

» Any distribution with bounded support that satisfies assumptions Al
and A2.

» The Generalized Gamma distribution with density proportional to
adile_(%)p, provided that p > 1.

» The Gamma distribution with shape v and rate p.




———
Main Result

Coefficients C(n, t,s) can be interpreted as posterior moments

oo
C(n,t,t+s):/ an(a | Ko = s)da = E[a® | Ky = 1]
0

Let 7 satisfy Al and A2. Then for fixed s, that does not depend on n, we have

C(n,t,t+s):E[a5|Kn:t]~m.

= it helps consistency!



General Consequences

Informal

Under suitable assumptions on 7, we may have
limsupp(Kn =t | X, ) < 1
for every a > 0 and

limp(K, =t | X1n) = 1, in P*("O)—probability.

> lIdea: Lower bounds R(n,s,t) in the literature are enough to prove inconsistency
with fixed «, but it is an open question when o ~ 7
(composed with our rate for C(n, t,s) they go to zero).

> we have to derive new upper bounds (or tighter lower bounds) for R(n, s, t) to
prove consistency (or inconsistency).



I e ——
A Simple Application

Let
P* =dg~, k(-10)=N(-]6%,1), Qo= N(0,1)

Let 7 satisfies A1-A3 (with p > 16). Then
p(Kn =1 | Xl:n) — ]—,

as n — oo in P*(°°)_probability.

If o is fixed, this is not true.
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———
A More General Class

Let

B1 6 be a location parameter, i.e. k(x| 0) = g(x — 0).
B2 The support of g be bounded.

B3 The true values (6], ...,0;) be sufficiently separated.

Let 7 satisfies A1-A3 (with p high enough). Then

P(Kn =t | Xl:n) — 17

as n — oo in P*(®)_probability. If 7(-) = 64, then

limsup p(Kn =t | X1.n) < 1.




Summary

> A prior on « significantly changes the scenario.
» It makes the model more robust...

> ...and adaptive.

What's next?

» Other mixture kernel and truth.

v

Impact of random « in infinite mixtures...

v

Convergence rates.

» What about other BNP priors.
E.g., Gibbs-type (Gnedin & Pitman 2006, De Blasi et. al., 2015).



Other Interesting Solutions

> If t is a crucial parameter and we think it is finite for any sample size n, better
explicitly model it: mixture of finite mixtures (MFM) (Nobile, 1994; Richardson
& Green, 1997; De Blasi et al. 2015; Miller & Harrison, 2018; Greve et al., 2022;
Argiento & De lorio, 2022).
= How to compare with MFM? Finite (unbounded) vs infinite # components.

> Consistent post-processing, even with « fixed (Guha et al., 2021; Alamichel et
al., 2023+).

> Let the hyperparameter changes deterministically with n (Ohn & Lin, 2023; Zeng,
Miller & Duan, 2023)



Final Comments

Problems and practical comments:

> Mis-specification of the kernel leads to inconsistency for the number of
components (Cai et al., 2021).

> High-dimensional data are particularly challenging for clustering methods, which
often incorrectly estimate the number of clusters (Chandra et al., 2023).

» Understanding the posterior behavior of the number of clusters in a finite sample
obtained from the Bayesian estimate for the clustering under different losses
(Chaumeny et al., 2023+; Franzolini & Rebaudo, 2023+).



My co-authors
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