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DPM

▶ Dirichlet process mixtures (DPM) (Lo, 1984) are the most popular Bayesian
nonparametric method for density estimation and probabilistic clustering

Xi |θi
ind∼ k(·|θi ), θi | P̃ iid∼ P̃, P̃ =

∞∑
j=1

p̃j δθ̃j
∼ DP(α, Q0).

▶ Validation: one of the most popular ways to validate inferential procedure is via
frequentist properties. Consistency is a natural minimal requirement.

▶ Density estimation: ideal data generating truth:

Xi
iid∼ f ∗

in several relevant cases and metrics, the posterior distribution concentrates at
the true data-generating density (at the minimax-optimal rate, up to a
logarithmic factor) (Ghosal et al., 1999; Ghosal & Van der Vaart, 2007).
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DPM for Probabilistic Clustering

▶ Obs are clustered together if they arise from the same k (e.g., Gaussian).
# clusters in a sample = # of occupied mixture components Kn ≤ n.

▶ Let τs(n) = set of unordered partitions of {1, . . . , n} in s non empty subsets.

▶ The DPM model can be rewritten with respect to the random partitions:

p(A | α) =
αs

α(n)

s∏
j=1

(aj − 1)!, A ∈ τs(n) → Partition

p(θ̂1:s | A, s, α) =
s∏

j=1

Q0(θ̂j ) → Unique parameters

p(X1:n | θ̂1:s , A) =
s∏

j=1

∏
i∈Aj

k(Xi | θ̂j ) → Observations
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Validation: Probabilistic Clustering

▶ Validation: ideal data-generating truth is a finite mixture model

Xi
iid∼

t∑
j=1

p∗
j k(· | θ∗

j )

▶ t ∈ N is the true number of mixture components. Some mis-specification: DPM
has ∞ components! However, DPM is often used in practice when we believe that
t ∈ N for any n to avoid fixing an upper bound for t (Miller and Harrison, 2013).

▶ Def: clusters = occupied mixture components. t is also the true # of clusters in
the ideal population.

More precisely, we can sample from the truth as first sampling the true clustering
memberships Zi ∈ {1, . . . , t}. K⋆

n =# clusters := #{Z1, . . . , Zn}

Under the truth, K⋆
n = t eventually almost surely.
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Validation: Clustering Consistency under DPM

▶ Question: can we hope to learn the true partition?
No! Without other info (e.g., repeated measurements with the same clustering).

f ∗ = 0.5 N(· | mean = −3, sd = 1) + 0.5 N(· | mean = 3, sd = 1)

▶ Question: can we learn the true t?
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Related Results

▶ Related interesting consistency results:
▶ Wasserstein distance posterior consistency of the mixing distribution under general

conditions (Nguyen, 2013);
▶ Under over-fitted finite Dirichlet mixtures (dimension K > t) and regularity

assumptions, the additional weights can vanish or not depending on the
hyperparameters of the finite Dirichlet (Rousseau and Mengersen, 2011).

▶ This kind of consistency does not imply consistency for t.
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Further Motivations

Understanding the posterior behavior of Kn is useful for

▶ Consistency/robustenss
▶ As a frequentist validation of the clustering and inference for the number of

components.
▶ What if? Understanding the learning and not just the prior.

▶ Parsimony. Having posterior behavior of Kn such that we don’t overshoot (open
too many clusters) if they are not needed to fit the data is useful for
▶ Computation (e.g., better efficiency and mixing of MCMC, fewer identifiability

issues).
▶ better estimates (more borrowing i.e., bigger clusters thus better learning and less

prior when we have enough good info).
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Miller and Harrison, 2014

Consider a DPM model with fixed α and essentially any continuous kernel k(·).
Assuming (X1, X2, . . .) ∼ P∗(∞) such that

Xi
iid∼

t∑
j=1

p∗
j k(· | θ∗

j ),

then
lim sup p(Kn = t | X1:n) < 1,

in P∗(∞)-probability.

⇒ inconsistency!

Recall the notation. Two probabilities:

▶ p is the model.

▶ P∗ is the data generating truth.
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Gaussian Case

Assume k(· | θ) = N(· | θ, 1).

Miller and Harrison, 2013

If P∗ is any distribution with finite first moment, then p(Kn = 1 | X1:n) does
not converge to 1. Even if the data are all constant.

Miller and Harrison, 2013

If Xi
iid∼ N(0, 1), then:

p(Kn = 1 | X1:n) → 0,

as n → ∞ in P∗(∞)-probability.
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Comments

▶ with fixed α, we always have inconsistency.

▶ finer lower bounds p(Kn = t | X1:n) in the DPM of Normals can be found in Yang
et al. (2023+).

▶ inconsistency holds also for the Pitman-Yor process (Miller and Harrison, 2014)...

▶ ..and the other Gibbs-type priors (De Blasi et al.) with σ > 0 (Alamichel et al.,
2023+).
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An important Comment

The concentration parameter plays a crucial role

p(θi ̸= θj ) =
α

1 + α
,

so smaller α ⇒ less clusters.

▶ Fixing α is difficult.

▶ Usually a prior is placed, i.e. α ∼ π(·).
To have a more flexible distribution on the clustering of the data, in most
implementations of the DPM (e.g., Escobar & West 1995)

α ∼ π → Prior for concentration parameter

the mixing measure is itself a mixture in the sense of Antoniak (1974).

▶ Does it change the asymptotic behavior of Kn?
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Intuition: Why Inconsistency is not Obvious from Literature

For any fixed α ∈ R

lim sup p(Kn = t | X1:n, α) < 1 (=0 Gaussian case) .

When a prior is placed

lim sup p(Kn = t | X1:n) = lim sup
∫

p(Kn = t | X1:n, α)π(α | X1:n) dα

?=
∫ =0︷ ︸︸ ︷

lim sup p(Kn = t | X1:n, α) π(α | X1:n) dα.

▶ In general the limit and the integral cannot be exchanged!

▶ If π(α | X1:n) concentrates around 0 we may achieve consistency.
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Our result

▶ If π(α | X1:n) concentrates around 0 we may achieve consistency.

Posterior of α and Kn consistency

Under mild assumptions on π, if the model is consistent for the number of
clusters we have

π(α | X1:n) → δ0,

weakly as n → ∞, in P∗(∞)-probability.

▶ A New Hope: a priori Kn ∼ α log(n), therefore if the data are very close in terms
of the kernel we expect empirical-based estimator α̂(n) → 0 as n → ∞.
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Proof Technique

We have consistency if and only if∑
s ̸=t

p(Kn = s | X1:n)
p(Kn = t | X1:n)

→ 0 as n → ∞ .

▶ It suffices to work with ratios.

▶ Why is it useful?
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Proof Idea

It holds

p(Kn = s | X1:n)
p(Kn = t | X1:n)

=

∫ αs

α(n) π(α) dα∫ αt

α(n) π(α) dα︸ ︷︷ ︸
C(n,t,s)

∑
A∈τs (n)

∏s
j=1(aj − 1)!

∏s
j=1 m(XAj )∑

B∈τt (n)

∏t
j=1(bj − 1)!

∏t
j=1 m(XBj )︸ ︷︷ ︸

R(n,t,s)

.

▶ The prior π impact only C(n, t, s).

▶ If C(n, t, s) → 0, for s > t, this may help!
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The Choice of the Prior

We make the following assumptions

A1. Absolute continuity: the prior admits a density with respect to the Lebesgue
measure.

A2. Polynomial behaviour around the origin: ∃ ϵ, δ, β such that ∀α ∈ (0, ϵ) it holds
1
δ

αβ ≤ π(α) ≤ δαβ .

A3. Subfactorial moments: ∃ D, ν, ρ > 0 such that
∫

αsπ(α) dα < Dρ−sΓ(ν + s + 1)
for every s ≥ 1.

The following choices of π(·) satisfy assumptions A1, A2 and A3:

▶ Any distribution with bounded support that satisfies assumptions A1
and A2.

▶ The Generalized Gamma distribution with density proportional to
αd−1e−( α

a )p
, provided that p > 1.

▶ The Gamma distribution with shape ν and rate ρ.
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Main Result

Coefficients C(n, t, s) can be interpreted as posterior moments

C(n, t, t + s) =
∫ ∞

0
αsπ(α | Kn = s) dα = E [αs | Kn = t].

Let π satisfy A1 and A2. Then for fixed s, that does not depend on n, we have

C(n, t, t + s) = E [αs | Kn = t] ∼
1

logs(n)
.

⇒ it helps consistency!
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General Consequences

Informal

Under suitable assumptions on π, we may have

lim sup p(Kn = t | X1:n, α) < 1

for every α > 0 and

lim p(Kn = t | X1:n) → 1, in P∗(∞)-probability.

▶ Idea: Lower bounds R(n, s, t) in the literature are enough to prove inconsistency
with fixed α, but it is an open question when α ∼ π
(composed with our rate for C(n, t, s) they go to zero).

▶ we have to derive new upper bounds (or tighter lower bounds) for R(n, s, t) to
prove consistency (or inconsistency).
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A Simple Application

Let
P∗ = δθ∗ , k(· | θ) = N(· | θ∗, 1), Q0 = N(0, 1)

Let π satisfies A1-A3 (with ρ > 16). Then

p(Kn = 1 | X1:n) → 1,

as n → ∞ in P∗(∞)-probability.

If α is fixed, this is not true.
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A More General Class

Let

B1 θ be a location parameter, i.e. k(x | θ) = g(x − θ).

B2 The support of g be bounded.

B3 The true values (θ∗
1 , . . . , θ∗

t ) be sufficiently separated.

Let π satisfies A1-A3 (with ρ high enough). Then

p(Kn = t | X1:n) → 1,

as n → ∞ in P∗(∞)-probability. If π(·) = δα∗ , then

lim sup p(Kn = t | X1:n) < 1.
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Summary

▶ A prior on α significantly changes the scenario.

▶ It makes the model more robust...

▶ ...and adaptive.

What’s next?

▶ Other mixture kernel and truth.

▶ Impact of random α in infinite mixtures...

▶ Convergence rates.

▶ What about other BNP priors.
E.g., Gibbs-type (Gnedin & Pitman 2006, De Blasi et. al., 2015).
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Other Interesting Solutions

▶ If t is a crucial parameter and we think it is finite for any sample size n, better
explicitly model it: mixture of finite mixtures (MFM) (Nobile, 1994; Richardson
& Green, 1997; De Blasi et al. 2015; Miller & Harrison, 2018; Greve et al., 2022;
Argiento & De Iorio, 2022).
⇒ How to compare with MFM? Finite (unbounded) vs infinite # components.

▶ Consistent post-processing, even with α fixed (Guha et al., 2021; Alamichel et
al., 2023+).

▶ Let the hyperparameter changes deterministically with n (Ohn & Lin, 2023; Zeng,
Miller & Duan, 2023)
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Final Comments

Problems and practical comments:

▶ Mis-specification of the kernel leads to inconsistency for the number of
components (Cai et al., 2021).

▶ High-dimensional data are particularly challenging for clustering methods, which
often incorrectly estimate the number of clusters (Chandra et al., 2023).

▶ Understanding the posterior behavior of the number of clusters in a finite sample
obtained from the Bayesian estimate for the clustering under different losses
(Chaumeny et al., 2023+; Franzolini & Rebaudo, 2023+).
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