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Abstract Bayesian nonparametric mixture models are widely used to cluster ob-
servations. However, one of the major drawbacks of the approach is that the esti-
mated partition often presents only a few dominating clusters and a large number of
sparsely-populated ones. This feature translates into results that are uninterpretable
unless we accept to ignore a relevant number of observations and clusters. Here,
we explain this phenomenon through the study of the cost functions involved in the
estimation of the partition. Moreover, we propose a post-processing procedure to
reduce the number of sparsely-populated clusters. The procedure takes the form of
entropy-regularization of posterior cluster allocations. While being computationally
convenient with respect to alternative strategies, it is also theoretically justified as
a correction to the Bayesian loss function used for point estimation and, as such,
can be applied to any posterior distribution of clusters, regardless of the specific
Bayesian model used.
Abstract I modelli Bayesiani nonparametrici con misture sono ampiamente utiliz-
zati per effettuare cluster analysis. Tuttavia, uno dei principali limiti è il fatto che
spesso identifichino un ampio numero di cluster poco popolati. Questa caratteris-
tica si traduce in risultati di difficile interpretazione a meno che non si accetti di
ignorare un numero di osservazioni e cluster. In questo lavoro, spieghiamo questo
fenomeno attraverso lo studio delle funzioni di costo coinvolte nella stima della
partizione. Inoltre, proponiamo una procedura di post-processing volta a ridurre
il numero di cluster scarsamente popolati. La procedura prende la forma di una
regolarizzazione dell’entropia dell’allocazione in cluster. La proposta appare com-
putazionalmente conveniente rispetto a strategie alternative e trova giusticazione
teorica in quanto correzione della funzione di perdita bayesiana impiegata nella
stima puntuale, e, proprio per questa ragione, può essere adottata a prescindere
dallo specifico modello utilizzato.
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1 Introduction

Clustering methods are used to detect patterns by partitioning observations into dif-
ferent groups. What are desirable characteristics of clusters depends on the specific
applied problem at hand (see e.g., Hennig, 2015). Nonetheless, clustering methods
are typically motivated by the idea that observations are more similar within the
same cluster than across clusters (accordingly to a certain definition of similarity).

Clustering has been proved useful in a large variety of fields including but not
limited to image processing, bio-medicine, marketing, and natural language pro-
cessing. Clustering methods are used not only to detect sub-groups of subjects, but
also for dimensionality reduction (Blei et al., 2003; Petrone et al., 2009), outlier-
detection (Shotwell and Slate, 2011; Ngan et al., 2015; Franzolini et al., 2022), and
data pre-processing (Zhang et al., 2006). Among clustering techniques, we can dis-
tinguish two main classes: model-based and non model-based.

Contrary to other popular clustering techniques, as k-means, model-based clus-
tering methods allow us to perform inference via rigorous probabilistic assessments.
Typically, model-based clustering frameworks are equivalent to the assumption that
the observations y1, . . .yn are extracted from an infinite population following a mix-
ture

yi
iid∼

K

∑
h=1

wh k(·;θh) i = 1,. . . , n, (1)

where the mixture components k(·;θh) are probability kernels to be interpreted as
distributions of distinct clusters in the infinite population, (wh, θh)

K
h=1 are unknown

parameters that determine the relative proportion and the shape of such popula-
tion clusters, and K is the total number of clusters in the population. K can be
either a fixed value or an unknown parameter. However, the main goal of clus-
tering techniques is to estimate a partition of the observed sample, more than the
distribution of the whole ideal population in (1). The partition that one wants to
estimate can be encoded using a sequence of subject-specific labels (c1, . . . ,cn) tak-
ing value in the set of natural numbers such that ci = c j = c if and only if yi and
y j belong to the same cluster and follow the same mixture component k(·;θc), i.e.

yi | ci
ind∼ k(·;θci) for i = 1, . . . ,n. The indicators (c1, . . . ,cn), as just defined, are af-

fected by the label switching problem (see, for instance, Stephens, 2000; McLachlan
et al., 2019; Gil-Leyva et al., 2020). To overcome the issue, in the following, we as-
sume them to be encoded in order of appearance. The likelihood for ccc = (c1, . . . ,cn)
and θθθ = (θ1, . . . ,θKn) is

L (ccc,θθθ ;yyy) =
Kn

∏
c=1

∏
i:ci=c

k(yi;θc). (2)

An important and typically unknown parameter is the number of clusters Kn ob-
served in the sample, i.e., the number of occupied components. Obviously, Kn ≤ K.
For this reason, when we let n vary, finite fixed values for K are usually to be avoided
and K is either fixed to +∞ (e.g. in Dirichlet process mixtures, Ferguson, 1983; Lo,
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1984) or it is estimated from the data (e.g. mixtures of finite mixtures, see Miller
and Harrison, 2018; Argiento and De Iorio, 2019).

When Kn is unknown, the clustering labels in (2) cannot be estimated with a
standard frequentist approach. In fact, when the maximum likelihood estimator
(MLE) for (2) exists, it coincides with the vector of MLEs (θ̂1, . . . , θ̂n), where each
θ̂i is obtained considering one observation at a time and the independent models
yi ∼ k(yi | θi), for i = 1, . . . ,n. Moreover, note that under typical mixture model as-
sumptions for clustering, we have that θ̂1 ̸= . . . ̸= θ̂n. For instance, when k is a mul-
tivariate Gaussian density and θ is the pair of mean vector and variance matrix of
the Gaussian component, the MLE entails a number of clusters equal to the number
of distinct observed values, that by model’s assumptions equals n with probability
1. Thus, no information on clusters can ever be gained through MLE and overfitting
is unavoidable unless one relies on strong restrictions of the parameter space. In this
regard, note that maximizing (2) is not the same as computing the nonparametric
maximum likelihood estimator (Lindsay, 1995; Polyanskiy and Wu, 2020; Saha and
Guntuboyina, 2020) for the mixture model in (1).

Differently, Bayesian models, and in particular Bayesian nonparametric (BNP)
models, are largely used for model-based clustering, since priors act as penalties
shrinking the number of distinct clusters.

The content of the paper is organized as follows. Section 2 presents the study of
the cost functions involved in BNP clustering models and explains a common draw-
back, i.e., the presence of noisy and sparsely populated clusters typically observed
in the posterior estimates of these models. Then, a computationally convenient and
theoretically justified solution to reduce the number of sparsely populated clusters
is presented in Section 3 and showcased on simulated and real data, respectively in
Sections 4 and 5.

2 Implied costs functions in Bayesian nonparametric clustering

The vast majority of Bayesian models for clustering rely on a prior for ccc and Kn
defined through an exchangeable partition probability function (EPPF) (see, Pit-
man, 1996) and, independently, a prior P is used for the unique values (θ1, . . . ,θKn).
Therefore, the corresponding posterior distribution is

p(Kn,ccc,θθθ | yyy) ∝

Kn

∏
c=1

∏
i:ci=c

k(yi;θc)×EPPF(n1, . . . ,nKn)×P(dθθθ), (3)

which can be equivalently represented as the cost function− log(p(Kn,ccc,θθθ | yyy)), i.e.

C(Kn,ccc,θθθ ;yyy) =Clik(Kn,ccc,θθθ ;yyy)+ Cpart(Kn,ccc;α)+ Cbase(Kn,θθθ),

which is the sum of three terms, that in the following are named respectively likeli-
hood cost, partition cost, and base cost.
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As already mentioned, the minimum of the likelihood cost

Clik(Kn,ccc,θθθ ;yyy) =−
Kn

∑
c=1

n

∑
i:ci=c

log k(yi;θc)

typically corresponds to Kn equal to the number of distinct observed values. The
remaining two costs are those defined by the prior of the model and their marginal
behavior is described here below. Clearly, any inference result has to be derived
based on the whole posterior distribution in (3), which is the result of the joint, and
not marginal, effect of all three costs. Nonetheless considering one cost at a time
allows us to gain insights regarding the estimation procedure and the frequentist
penalties induced by the prior. A lot of attention in the literature has been devoted to
the choice of the EPPF and many alternatives are available (see, for example, Lijoi
et al., 2007; Lijoi and Prünster, 2010; De Blasi et al., 2013; Greve et al., 2022),
while, except for few cases (Petralia et al., 2012; Xu et al., 2016; Beraha et al.,
2021), the role of the base cost appears partially overlooked within the Bayesian
methodology literature.

However, when BNP clustering methods are applied in practice, the choice of an
appropriate base distribution is known to be crucial. The most common choice is to
use an independent prior on the unique values so that θc

iid∼ P0 and

Cbase(Kn,θθθ) =−
Kn

∑
c=1

logP0(dθc),

where the variance of the distribution P0 is known to play an important role in the
estimation process and, typically, the higher the variance of P0 the lower the number
of clusters identified by the posterior (cfr., e.g. Gelman et al., 2013, p. 535). This
phenomenon can be explained by looking at the joint distribution induced by P0 on
the unique value. For instance, when P0 is set to be a univariate normal distribution
centered in µ and with variance σ2, we have

Cbase(Kn,θθθ) =
Kn

2
log(2π)+

Kn

2
logσ

2 +
1
2

Kn

∑
c=1

(θc−µ)2

σ2 .

When the variance is increased from σ2 to λ 2, intuitively the base cost increases for
those vectors (θ1, . . . ,θKn) whose components are similar and it decreases for vec-
tors with more diverse components, thus ultimately favoring the variability of the
unique values and penalizing many overlapping clusters. More formally, defining
the Kn-sphere θθθ ∈ RKn such that ∑

Kn
c=1(θc− µ)2 = Kn

log(λ 2/σ2)σ2λ 2

λ 2−σ2 , we have that
the cost increases for vectors (θ1, . . . ,θKn) corresponding to points inside the sphere
and decreases for those vectors corresponding to points outside the sphere. In prac-
tice, P0 is usually set to be a continuous scale mixture, where the mixed density is
conjugate to the kernel k for computational convenience, while the mixing density
is used to increase appropriately the marginal scale of the mixture P0.
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(a) (b)

Fig. 1: Partition cost as function of entropy in a DPM model with α = 1 (panel a)
and in a PYPM model with α = 1 and σ = 0.5 (panel b) for n = 100 observations
clustered into 2 (blue line), 3 (red line), and 4 (green line) clusters.

Finally, let us comment on the partition cost Cpart. Its behavior is less straight-
forward and we consider here only two important and widely used cases: Dirichlet
process mixtures (DPM) and Pitman-Yor process (Pitman and Yor, 1997) mixtures
(PYPM). With a DPM model, up to an additive constant, we have

Cpart(Kn,ccc;α) =−Kn log α−
Kn

∑
c=1

logΓ (nc),

where α is the concentration parameter of the Dirichlet Process. The DPM partition
cost tends to favor parsimonious values of Kn (wrt to the likelihood cost that in
general tends to favor Kn = n). However, contrary to the base cost, it depends also
on clusters’ frequencies.

Figure 1(a) showcases the partition cost of DPM for different values of what we
refer henceforth to as the entropy of the frequencies (n1, . . . ,nKn), i.e.

S(n1, . . . ,nKn) =−
Kn

∑
c=1

nc

n
logKn

nc

n
.

Overall the EPPF acts favoring frequencies (n1, . . . ,nKn) with low entropy and thus,
roughly speaking, higher sample variance of the frequencies. However, this feature
ultimately results in two distinct effects: one acting on the total number of occu-
pied clusters Kn and another acting on the variance of the clusters’ frequencies
(n1, . . . ,nKn). Even though these two features both favor a reduced entropy, they
entail very different scenarios in terms of estimated clustering structure, especially
from an applied and practical point of view. Penalizing large numbers of clusters
is typically desirable in applications because an elevated number of clusters may
be difficult to interpret, however a partition with few dominating clusters and many
sparsely populated clusters is highly undesirable because it is hard to interpret unless
one decides to ignore all the information contained in the small clusters and focus
only on the dominating ones. See also Green and Richardson (2001) for a study of
the posterior entropy in the Dirichlet process mixture and Greve et al. (2022) for
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more details on entropy in mixture of finite mixture models. In the case of a PYPM
the partition cost, up to an additive constant, equals

Cpart(Kn,ccc;α,σ) =−
Kn

∑
c=1

log(α +σ(c−1))−
Kn

∑
c=1

logΓ (nc−σ)+Kn logΓ (1−σ).

Despite that the EPPFs are different, Figure 1 shows in both processes a closely
similar behavior in terms of entropy penalization.

Note that Figure 1 provides us with insights into the behavior of the EPPFs eval-
uated in a vector of clusters’ frequencies (n1, . . . ,nKn), i.e., the probability of a spe-
cific clustering configuration with unordered frequencies {n1, . . . ,nKn}. Note that
the vectors (n1, . . . ,nKn) are not in a one-to-one correspondence with the partitions
and the number of partitions corresponding to certain frequencies varies across vec-
tors. The same is true for other marginal quantities such as the number of clusters
Kn. For instance, the number of possible partitions rapidly increases with Kn accord-
ingly to Stirling numbers of the second kind. Importantly, this information must also
be considered combined with the partition cost evaluated in a specific partition, rep-
resented in Figure 1, if we are interested in fully understanding the impact of the
EPPF on prior and posterior distributions of functionals of the partition, e.g., on the
marginal distribution of Kn. Note that combining the two features the typical par-
tition cost strongly penalized too many clusters suggested by the likelihood costs,
i.e. Kn = n, but favors a small number of clusters with respect to n that adaptively
increases with the sample size n, (See e.g., De Blasi et al., 2013). Considering both
aspects is also important if we want to understand the effect of the partition cost
on a point estimate of the clustering that is different from the MAP (maximum a
posteriori) of the partition, but minimizes the Bayesian risk, i.e., posterior expected
loss, according to flexible loss as discussed in the next section.

3 Regularized-entropy estimator

Once the posterior distribution P(ccc | y1:n) over the space of partitions is obtained,
typically thanks to a Markov Chain Monte Carlo algorithm, a point estimate ĉcc of the
partition can be obtained accordingly to the decision-theoretic approach of Bayesian
analysis. More precisely, ĉcc is obtained by minimizing the Bayesian risk, i.e, the
expected value of a loss function L(ccc, ĉcc) with respect to the posterior:

ccc∗ = argmin
ĉcc

E[L(ccc, ĉcc) | y1:n] = argmin
ĉcc

∑
ccc

L(ccc, ĉcc)P(ccc | y1:n),

where L(ccc, ĉcc) is the loss in which we incur using ĉcc as estimates when the partition
takes the value ccc. How to interpret and elicit the loss in practice can change ac-
cording to the philosophical point of view. Often in parameter estimation the loss is
interpreted as the cost of choosing ĉcc instead of the ideally optimal parameter value
ccc (sometimes interpreted as the truth). In a more subjective Bayesian framework,
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Algorithm 1 Entropy-regularized estimates
Input: MCMC chain of partitions {cccm,m = 1, . . . ,M}, λ

Output: point estimate ccc∗

1: Compute S(cccm) for m = 1, . . . ,M
2: Compute wm = exp{λS(cccm)} for m = 1, . . . ,M
3: w̄m← wm/∑m wm for m = 1, . . . ,M
4: Generate {c̃ccm,m = 1, . . . ,M}, sampling with replacement from {ccc1, . . . ,cccM} with prob.
{w̄m,m = 1, . . . ,M}

5: ccc∗← argmin∑
M
m=1 ∑ĉcc L(c̃ccm, ĉcc)

it can be interpreted, together with the model and prior, in terms of the preferences
implied on the possible parameter values ccc via the Bayesian risk. Finally, also in a
more frequentist framework the loss can be chosen in terms of the implied properties
of the estimator of the unknown parameter ĉcc.

Despite the different philosophical justifications, rarely in applied Bayesian clus-
tering analysis a 0-1 loss function and the resulting MAP estimator are employed
due to the large support of the posterior and the fact that the 0-1 loss function
does not reflect different levels of distance between two non-coinciding partitions.
Widely used alternatives in applications are Binder loss (Binder, 1978) or variation
of information loss (see, Meilă, 2007; Wade and Ghahramani, 2018; Dahl et al.,
2021).

We have already stressed how a large presence of noisy clusters is typically un-
desirable in practice and we claim that this aspect should be reflected in the loss
function used for point estimation, so that the loss of each partition is proportional
to its entropy. To do so, consider any possible loss function L(ccc, ĉcc) one would like
to use to derive the estimate, we can define a new loss function, that we named
entropy-regularized, as

L̄(ccc, ĉcc) = exp{λS(ccc)}L(ccc, ĉcc),

where, with a little abuse of notation wrt the previous section, S(ccc) is the entropy
of the partition identified by ccc and λ ∈ R. Recall that the base of the logarithm
involved in the computation of S(ccc) changes with the argument ccc and it is equal to
the number of unique values in ccc, so that S(ccc) = 1 can be obtained for any number of
non-empty clusters Kn≥ 2 (provided that n/Kn ∈N). Clearly, when λ is positive, for
any candidate estimate ĉ, the loss function is inflated in correspondence of partitions
ccc with high entropy, as desired.

Minimizing the expected entropy-regularized loss function L̄(ccc, ĉcc) with respect
to the posterior is equivalent to minimizing the original loss function L(ccc, ĉcc) with
respect to an entropy-regularized version P̄[ccc | y1:n] of the posterior distribution, i.e.

P̄[ccc | y1:n] ∝ exp{λ S(ccc)}P[ccc | y1:n].
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(a) Without entropy regulariza-
tion.

(b) With entropy regularization
for λ = 10.

(c) With entropy regularization
for λ = 20.

Fig. 2: Percentage of observations in sparsely-populated clusters before and after
entropy-regularization.

This result, while immediate to prove, is highly desirable, because it allows imple-
mentation of the entropy-correction in a very straightforward and computationally
feasible way which is described in Algorithm 1.

4 Simulation study

We provide here a simulation study, where n = 1000 observations are sampled from
3 different univariate Gaussian distributions. Here we refer to “true” clustering as the
one implied by the memberships indicators of the Gaussian kernels under the data
generating truth. We employ a normal-normal DPM and we compare the posterior
estimates obtained minimizing the Binder loss function and the entropy-regularized
Binder loss function. We set the concentration parameter α = 1, perform 20 000
MCMC simulations, and use the first 5000 as burnin. Defining as sparsely popu-
lated clusters those clusters containing 10% or less of observations, we found that
in almost a third (4755 out 15 000) of the MCMC iterations, 10% or more of the ob-
servations are allocated into sparsely populated clusters, while in almost two thirds
(9306 out of 15 000) of MCMC iterations, 5% or more of the observations are
allocated into sparsely populated clusters, see Figure 2a. The same counts after
entropy-regularization of the posterior (as described in the previous section) are,
with λ = 10, 3981 and 7825 out 15 000, see Figure 2b, and, with λ = 20, 1393 and
3366 out 15 000, see Figure 2c. However, notice that coherently with the interpre-
tation of the regularization in terms of the loss function, the regularized posterior
should be intended only as a computational tool to provide a summary of the poste-
rior distribution and not as an alternative posterior. So that, for instance, uncertainty
quantification should be computed using the original posterior.

Finally, Figure 3 shows the true and the estimated clusters with and without en-
tropy regularization and they highlight how the regularization acts allocating obser-
vations from noisy clusters into dominating ones. Finally, Figure 4 shows the cluster
frequencies for the three point estimates.
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(a) (b) (c) (d)

Fig. 3: Estimated clustering for the simulation study darker squares denote couples
of observations clustered together. Panel (a) shows the true clustering. Panel (b)
shows the clustering minimizing the Binder loss. Panel (c) shows the clustering
minimizing the entropy-regularized Binder loss for λ = 10 and panel (d) for λ = 20.

(a) Without entropy regulariza-
tion.

(b) With entropy regularization
for λ = 10.

(c) With entropy regularization
for λ = 20.

Fig. 4: Estimated clusters’ frequencies.

5 Results for the wine dataset

We test the performance of our method also on the wine dataset available on R,
where data are the results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis determined the quan-
tities of 13 constituents found in each of the three types of wines. Here we refer to
the clustering identified by the three types of wines as “ground truth”. We use the 13
constituents to estimate a Dirichlet process mixture model with multivariate Gaus-
sian kernels, and we try to recover the three groups of types of wine through the
estimated clustering. After running the MCMC for 10000 iterations and using the
first 2000 as burnin, the Binder loss function identifies a partition of seven clusters,
while our estimator for λ = 20 identifies three clusters. See Figure 5 and Figure 6.
Lastly, Figure 7 compares the clustering based on three groups of types of wine with
the two estimates.
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(a) Estimated partition without
entropy-regularization.

(b) Estimated partition after entropy-
regularization.

Fig. 5: Estimated partitions for the wine dataset. Darker squares denote couples of
observations clustered together, observations are ordered based on co-clustering.

(a) Without entropy-regularization. (b) With entropy-regularization.

Fig. 6: Estimated clusters’ frequencies for the wine dataset.

(a) (b) (c)

Fig. 7: Estimated clustering for the wine dataset. Darker squares denote couples
of observations clustered together, observations are ordered based three groups of
types of wine. Panel (a) shows the clustering ground truth. Panel (b) shows the
clustering minimizing the Binder loss. Panel (c) shows the clustering minimizing
the entropy-regularized Binder loss for λ = 20.
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