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Abstract

Bayesian binary regression is a prosperous area of research due to the computational
challenges encountered by currently available methods either for high-dimensional settings
or large datasets, or both. In the present work, we focus on the expectation propagation
(EP) approximation of the posterior distribution in Bayesian probit regression under a mul-
tivariate Gaussian prior distribution. Adapting more general derivations in Anceschi et al.
(2023), we show how to leverage results on the extended multivariate skew-normal distri-
bution to derive an efficient implementation of the EP routine having a per-iteration cost
that scales linearly in the number of covariates. This makes EP computationally feasible
also in challenging high-dimensional settings, as shown in a detailed simulation study.
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1. Introduction and literature review

The past few years have seen florid research in Bayesian inference for the probit model [4; 8] as
well as its extensions to dynamic [7; 6] and multinomial [5; 9; 10] settings and beyond [1; 11]. This
has been driven, among others, by computational challenges that may arise in high-dimensional settings.
See [3] for an excellent review of Bayesian computations for binary regression. Here, we focus on the
expectation propagation (EP) approximation of the posterior of the Bayesian probit model

yi | β
ind∼ BERN (Φ (x⊺

iβ)) , i = 1, . . . , n,

β ∼ Np(0, ν
2Ip),

(1)

where β ∈ Rp is the unknown vector of parameters, xi ∈ Rp is the covariate vector associated with
observation i and Ip denotes the identity matrix of dimension p. Φ(t) denotes instead the cumulative
distribution function of a standard Gaussian random variable evaluated at t. Similarly, ϕp(t,S) will de-
note the density of a p-variate Gaussian random variable with mean 0 and covariance matrix S, evaluated
at t. [4] showed that the posterior distribution for model (1) is a unified skew-normal (SUN) and that,
thanks to characterization properties of the SUN family, one can obtain i.i.d. samples from it via a linear
combination of p-variate Gaussian samples and n-variate truncated Gaussian samples. As the compu-
tational bottleneck is represented by the truncated normal component, such i.i.d. sampler is well-suited
for high-dimensional problems with small-to-moderate sample sizes but may become computationally
hard for larger sample sizes. To overcome such limitation, [8] developed a partially-factorized varia-
tional (PFM-VB) approximation of the posterior distribution which, for any fixed n, converges to the true
posterior distribution as p diverges. Crucially, PFM-VB does not require dealing with any multivariate
truncated Gaussian since the corresponding density component is replaced with a product of univari-
ate truncated Gaussian densities, which do not represent a computational problem. This approximation
has a pre-processing cost of O(pn · min{p, n}) and cost-per-iteration of O(n · min{p, n}), making it
computationally tractable also in large p and large n settings. Empirically, the approximate posterior
moments closely match the ones obtained via i.i.d. sampling for p ≥ 2n. The possible over-shrinkage of
the posterior moments towards zero for smaller p motivates the investigation of efficient implementations
of other approximation techniques that may be more accurate in those settings, like EP, at the price of
a higher computational cost. Adapting more general results obtained for a broad class of models in [1],
we show how the EP routine for posterior inference under the multivariate Gaussian prior in (1) can be
implemented at per-iteration-cost of O(pn ·min{p, n}), which, although higher than the one of PFM-VB,
improves over the cost O(p2n) reported in [3], leading to sensible computational advantages and making
EP computationally feasible also in settings with p of the order of tens of thousands. Considering the
goodness of the EP approximation [1; 3], the possibility to extend the number of scenarios where it can
be effectively implemented represents a major contribution to Bayesian binary regression computations.

2. Expectation propagation for the probit model

In this section, we present an implementation of EP for the probit model (1) which leverages results
on multivariate extended skew-normal (SN) random variables (see [2]). Calling y = (y1, . . . , yn), in
EP we approximate p(β | y) with q(β) ∝

∏n
i=0 qi(β), where q0(β), . . . , qn(β) are probability density

functions and, in particular, q0(β) = p(β) and qi(β) ∝ exp{−1
2β

⊺Qiβ + β⊺ri} for i = 1, . . . , n.
Hence, writing q0(β) ∝ exp{−1

2β
⊺Q0β + β⊺r0}, with r0 = 0 and Q0 = ν−2Ip, we immediately note

that q(β) = ϕp(β −Q−1r,Q−1), where r =
∑n

i=0 ri, Q =
∑n

i=0Qi.
EP proceeds by updating each site i = 1, . . . , n (we do not update the site of the prior), by iteratively

matching the first two moments of the global approximation q(β) and the hybrid distribution

hi(β) ∝ p(yi | β)
∏
j ̸=i

qj(β) = Φ((2yi − 1)x⊺
iβ)

∏
j ̸=i

qj(β). (2)

To compute the moments of (2), instead of proceeding as [3], we can exploit the fact that some easy
algebraic manipulations show that (2) is the kernel of a multivariate extended skew-normal distribution



SNp(ξi,Ωi,αi, τi) (see [2]), with

ξi = Q−1
−i r−i, Ωi = Q−1

−i ,

αi = (2yi − 1)ωixi, τi = (2yi − 1)(1 + x⊺
iΩixi)

−1/2x⊺
i ξi,

where Q−i =
∑

j ̸=iQj , r−i =
∑

j ̸=i rj and ωi = [diag (Ωi)]
1/2.

After noticing this, exploiting formulae (5.71) and (5.72) in [2], we can immediately obtain the first
two moments of hi(β):

µhi
= Ehi(β)[β] = ξi + ζ1(τi)siΩixi

Σhi
= varhi(β)[β] = Ωi + ζ2(τi)s

2
i (Ωixi)(Ωixi)

⊺,

where si = (2yi − 1)(1 + x⊺
iΩixi)

−1/2, ζ1(x) = ϕ(x)/Φ(x) and ζ2(x) = −ζ1(x)
2 − xζ1(x). Hence,

when updating site i, the EP moment-matching condition implies that the updated quantities rNEW
i and

QNEW
i must be such that {

(Q−i +QNEW
i )−1 (r−i + rNEW

i ) = µhi

(Q−i +QNEW
i )−1 = Σhi

,

from which it immediately follows{
rNEW
i = (Q−i +QNEW

i )µhi
− r−i

QNEW
i = Σ−1

hi
−Q−i.

The direct computation of Σ−1
hi

can be avoided since, by Woodbury’s identity

QNEW
i = Ω−1

i − ζ2(τi)s
2
i (1 + ζ2(τi)s

2
ix

⊺
iΩiΩ

−1
i Ωixi)

−1Ω−1
i Ωixix

⊺
iΩiΩ

−1
i −Q−i

= −ζ2(τi)s
2
i (1 + ζ2(τi)s

2
ix

⊺
iΩixi)

−1xix
⊺
i = −(ζ2(τi)

−1s−2
i + x⊺

iΩixi)
−1xix

⊺
i

= − ζ2(τi)

1 + x⊺
iΩixi + ζ2(τi)x

⊺
iΩixi

xix
⊺
i = kNEW

i xix
⊺
i ,

with kNEW
i = −ζ2(τi)/ (1 + x⊺

iΩixi + ζ2(τi)x
⊺
iΩixi). Moreover,

rNEW
i = Q−iµhi

+QNEW
i µhi

− r−i = Q−iQ
−1
−i r−i + ζ1(τi)siQ−iΩixi +QNEW

i µhi
− r−i

= ζ1(τi)sixi +QNEW
i µhi

= ζ1(τi)sixi + kNEW
i xix

⊺
iΩir−i + kNEW

i ζ1(τi)sixix
⊺
iΩixi

= [ζ1(τi)si + kNEW
i (Ωixi)

⊺r−i + kNEW
i ζ1(τi)six

⊺
iΩixi]xi = mNEW

i xi,

Algorithm 1: Probit EP - O(p2n) cost per iteration
Initialization: Q = ν−2Ip; Q−1 = ν2Ip; r = 0; ki = 0 and mi = 0 for i = 1, . . . , n.
for t from 1 until convergence do

for i from 1 to n do
Q−i = Q− kixix

⊺
i

r−i = r−mixi

Ωi = Q−1 + ki/ (1− kix
⊺
iQ

−1xi) (Q
−1xi) (Q

−1xi)
⊺

si = (2yi − 1)(1 + x⊺
iΩixi)

−1/2

τi = six
⊺
iΩi r−i

ki = −ζ2(τi)/ (1 + x⊺
iΩixi + ζ2(τi)x

⊺
iΩixi)

mi = ζ1(τi)si + ki(Ωixi)
⊺r−i + kiζ1(τi)six

⊺
iΩixi

Q = Q−i + kixix
⊺
i

r = r−i +mixi

Q−1 = Ωi + ζ2(τi)s
2
i (Ωixi)(Ωixi)

⊺

Output: q(β) = ϕp(β −Q−1r;Q−1)



where mNEW
i = ζ1(τi)si + kNEW

i (Ωixi)
⊺r−i + kNEW

i ζ1(τi)six
⊺
iΩixi. Hence, we can implement EP by

storing only the scalar quantities ki and mi, i = 1, . . . , n. In practice, they are initialized to zero, so that
the initial global approximation is the prior distribution. Combining the above results with Woodbury’s
identity, we obtain

Ωi = Q−1
−i = (Q− kixix

⊺
i )

−1
= Q−1 +

ki
1− kix

⊺
iQ

−1xi

(
Q−1xi

) (
Q−1xi

)⊺
,

which can be computed avoiding explicit matrix inversions, since Q−1 is known from the beginning.
Finally, the update of the inverse of the EP precision matrix is immediate as (QNEW)−1 = (Q−i +
QNEW

i )−1 = Σhi
.

Putting it all together, we obtain the EP implementation in Algorithm 1. Its core part coincides
with the EP derivations presented in [3], and implemented in the EPprobit function in the R package
EPGLM. However, we arrived at it by exploiting results on SNs that leverage more general derivations
for a broader class of models presented in [1]. We also avoided the computation of the normalizing
constants for the unnormalized densities, Zi, i = 1, . . . , n, which can be used for the computation of
the approximate marginal likelihood, since the approximated posterior moments can be computed also
without them. Algorithm 1 has per-iteration cost O(p2n), which, although avoiding explicit p×p matrix
inversions, might be impractical in high-dimensional settings. Adapting more general results presented
in [1], we thus derive in Section in full detail an implementation of EP for the Bayesian probit model
having per-iteration cost O(pn2).

3. Efficient expectation propagation for large p settings

The crucial part to obtain a per-iteration-cost that is linear in p is to note that we can avoid handling
p×p matrices, as, by close inspection of Algorithm 1, the whole EP routine can be written by working out
directly the updates of the p-dimensional vectors wi = Ωixi = Q−1

−ixi and vi = Q−1xi, i = 1, . . . , n.
As for the former, we have

wi = Q−1
−ixi = (Q−Qi)

−1xi = Q−1xi + (1− kix
⊺
iQ

−1xi)
−1ki(Q

−1xi)(Q
−1xi)

⊺xi

= vi + ki(1− kix
⊺
i vi)

−1viv
⊺
i xi =

[
1 + (1− kix

⊺
i vi)

−1(kix
⊺
i vi)

]
vi = divi,

where di = (1 − kix
⊺
i vi)

−1. As for the vi’s, each time a site i is updated Q changes and thus all the
vj’s, j = 1, . . . , n, should be modified accordingly as

vNEW
j = (QNEW)−1xj = (Q−Qi +QNEW

i )−1xj = [Q+ (kNEW
i − ki)xix

⊺
i ]
−1xj

= [Q−1 − (kNEW
i − ki)[1 + (kNEW

i − ki)x
⊺
iQ

−1xi]
−1Q−1xix

⊺
iQ

−1]xj

= Q−1xj − [(kNEW
i − ki)

−1 + x⊺
i vi]

−1vix
⊺
i vj = vj − ci(x

⊺
i vj)vi,

where ci = (kNEW
i −ki)/(1+(kNEW

i −ki)x
⊺
i vi). Instead of cycling over j, these updates can be performed

in block by defining a p × n matrix V = [v1,v2, . . . ,vn]. Accordingly, VNEW = V − civix
⊺
iV. This

operation is the most expensive per site update, being of order O(pn). Accordingly, each EP iteration
has cost O(pn2). Contrarily to Algorithm 1, once the procedure has reached convergence we still need
to calculate the inverse of the global precision matrix Q−1. The explicit calculation can be avoided as
follows, obtaining a post-processing cost of O(p2n). First, Q = Q0 +

∑n
i=1 kixix

⊺
i = ν−2Ip +X⊺KX

with X = (x1, . . . ,xn)
⊺ K = diag(k1, . . . , kn). Calling Λ = (In+ν2KXX⊺)−1, so that Q−1 = ν2Ip−

ν4X⊺ΛKX, one obtains that V = Q−1X⊺ = ν2X⊺
[
In−ν2ΛKXX⊺

]
= ν2X⊺Λ

[
Λ−1−ν2KXX⊺

]
=

ν2X⊺Λ and thus Q−1 = ν2Ip − ν2VKX. Notice that, if the interest is only in approximate posterior
means and variances, this expression for Q−1 allows doing it at reduced post-processing cost of O(pn).
The whole routine is summarized in Algorithm 2.



Algorithm 2: Efficient probit EP for large p - O(p · n2) cost per iteration
Initialization: r = 0; ki = 0 and mi = 0 for i = 1, . . . , n; V = [v1, . . . ,vn] = ν2X⊺.
for t from 1 until convergence do

for i from 1 to n do
wi = (1− kix

⊺
ivi)

−1vi

r−i = r−mixi

si = (2yi − 1)(1 + x⊺
iwi)

−1/2

τi = siw
⊺
i r−i

kNEW
i = −ζ2(τi)/ (1 + x⊺

iΩixi + ζ2(τi)x
⊺
iΩixi)

mi = ζ1(τi)si + kNEW
i (Ωixi)

⊺r−i + kNEW
i ζ1(τi)six

⊺
iΩixi

ki = knew
i

r = r−i +mixi

V = V − vi [(k
NEW
i − ki)/ (1 + (kNEW

i − ki)x
⊺
ivi)]x

⊺
iV

Q−1 = ν2Ip − ν2VKX

Output: q(β) = ϕp(β −Q−1r;Q−1)

4. Simulation study

We conclude with a simulation study where probit regression is applied to multiple simulated datasets,
with n = 100 and p = 50, 100, 200, 400 and 800. We investigate the performances of EP when the ef-
ficient implementations presented in Algorithm 1 and Algorithm 2 are used when p < n and p ≥ n,
respectively. Such implementation, denoted EP-EFF in the following, is compared with PFM-VB in terms
of running time and quality of the approximation. The latter is measured by the median absolute differ-
ence between the approximate posterior means and standard deviations and the ones computed via 2000
i.i.d. samples, for ν2 = 25. The moderate sample size is taken so that the i.i.d. sampler is computation-
ally efficient, but the approximate methods could be used in more challenging settings, as in all scenarios
they both give almost immediate outputs. To show the computational gains with respect to standard EP
implementations, we also compare the running time needed to obtain the EP approximation with the R
function EPprobit from the package EPGLM, which implements the EP derivations reported in [3]. As
it emerges from Table 1, EP-EFF leads to a dramatic reduction of the computational effort with respect
to the standard EPprobit in high dimensions. This results in a drop of the running time by more than
three orders of magnitude in the setting p = 800, with a computational gain increasing with p, as ex-
pected. The EP-EFF running times, although generally much lower than the ones of EPprobit, are still
higher than the ones of PFM-VB in most cases. Nevertheless, if one looks at the quality of the approxima-
tion of the two posterior moments in Figure 1, EP-EFF gives consistently accurate approximations across
different dimensions of p, while PFM-VB gets similar accuracy for p ≳ 2n. This shows the importance
of developing efficient implementations for EP like the ones in this paper, so make it computationally
feasible in challenging high-dimensional settings where routine implementations are impractical. Code
can be found at https://github.com/augustofasano/EPprobit-SN.

Table 1: Running time, in seconds, to compute posterior means and standard deviations with the EP approxi-
mation as in Algorithms 1 and 2 (EP-EFF), with the EP approximation computed via the R function EPprobit
(EPprobit) and with the PFM-VB approximation (PFM-VB) for probit regression with n = 100 and ν2 = 25.

p
Method 50 100 200 400 800

Running time (seconds) EP-EFF 0.11 0.02 0.03 0.05 0.09
EPprobit 0.07 0.42 3.18 24.36 140.24
PFM-VB 0.11 0.06 0.01 0.01 0.01

https://github.com/augustofasano/EPprobit-SN


Figure 1: For varying p, median absolute difference between the p posterior means and standard
deviations resulting from 2000 i.i.d. samples and the ones arising from EP-EFF and PFM-VB for
probit regression with n = 100 and ν2 = 25. Grey areas denote the first and third quartiles.
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