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Abstract. The smoothing distribution of dynamic probit models with
Gaussian state dynamics was recently proved to belong to the unified
skew-normal family. Although this is computationally tractable in small-
to-moderate settings, it may become computationally impractical in higher
dimensions. In this work, adapting a recent more general class of expec-
tation propagation (ep) algorithms, we derive an efficient ep routine to
perform inference for such a distribution. We show that the proposed
approximation leads to accuracy gains over available approximate algo-
rithms in a financial illustration.
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1 Introduction

Dynamic binary regression is a lively field of research, with the dynamic probit
model playing a central role [1,2,3,4]. In this work, we develop an expectation
propagation (ep) approximation of the joint smoothing distribution in a dy-
namic probit model. In such a state-space model, for each time t, a known
p-dimensional covariate vector xt is available, while the binary observations
yt ∈ {0; 1}, t = 1, . . . , n, compose a time series whose dependence across time
is driven by a dynamic latent state θt = (θ1t, . . . , θpt)

⊺ ∈ Rp. The latter has
Markovian dynamics and affects the probability of success of the observation at
the corresponding time according to the following specifications

yt | θt ∼ Bern(Φ(x⊺
t θt)), (1)

θt = Gtθt−1 + εt, εt
ind∼ Np(0,Wt), t = 1 . . . , n, (2)

with θ0 ∼ Np(a0,P0) ⊥ {εt}t≥1. We denote with Φ(·) the cumulative distri-
bution function of the standard normal distribution, while Gt, Wt and P0

are known matrices. In the following, according to common practices, we set
a0 = 0. Moreover, we will denote with Φm(z;Σ) the cumulative distribution of
an m-variate Gaussian random variable having zero mean and covariance ma-
trix Σ, evaluated at z. Calling y1:n = (y1, . . . , yn)

⊺ and θ1:n = (θ⊺
1 , . . . ,θ

⊺
n)

⊺,
the smoothing distribution is given by p(θ1:n | y1:n), which has been showed (see
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[2]) to belong to the class of unified skew-normal (sun) distributions [5]. This
result comes however with some computational difficulties when the length of
the time series is moderately large, for the reasons clarified in Section 2, motivat-
ing the development of approximate methods [3]. This can be done by resorting
to expectation propagation, which constructs a Gaussian approximation of the
true posterior mirroring its factorization structure [6]. To this end, it is worth
noting that the model (1)-(2) can be rewritten as a probit model with parameter
θ1:n ∈ Rpn and fictional pn-dimensional covariates x̃t = (0⊺

p(t−1),x
⊺
t ,0

⊺
p(n−t))

⊺,

with 0m denoting the m-dimensional column vector of zeros. Indeed, model (1)-
(2) is equivalent to

p(yt | θ1:n) = Φ((2yt − 1)x̃⊺
t θ1:n), (3)

θ1:n ∼ Npn(0,Ω), (4)

where Ω is composed by (p × p)-dimensional blocks whose expression follows
directly from the dynamics in (2): defining Gt

l = Gt · · ·Gl, l ≤ t − 1, it holds

Ω[tt] = var(θt) = Gt
1P0G

t⊺
1 +

∑t
l=2 G

t
lWl−1G

t⊺
l + Wt, for t = 1, . . . , n, and

Ω[tl] = Ω⊺
[lt] = cov(θt,θl) = Gt

l+1Ω[ll], for t > l (see also [3]). From this,

p(θ1:n | y1:n) ∝ p(θ1:n)

n∏
t=1

Φ((2yt − 1)x̃⊺
t θ1:n). (5)

Leveraging on this representation, the ep scheme constructs an approximating
density of (5) by replacing each factor therein with a Gaussian density, whose
parameters are optimized iteratively via moments matching between the global
approximant and a so-called hybrid distribution, as detailed in Section 3. The
resulting global ep approximation, which is Gaussian by construction, is shown
to be accurate and tractable in Section 4. More details on the ep algorithm can
be found, for instance, in Chapter 10 of [7].

2 Literature review

Exploiting (5), [2] extended the conjugacy results in the static probit regression
[8] to the more challenging multivariate dynamic probit setting. In particular,
[2] showed that the filtering, predictive, and smoothing densities of the state
variables in this setting have unified skew-normal (sun) [5] kernels and com-
pute the closed form of the parameters of such distributions. To provide a brief
overview, a random vector θ ∈ Rq is said to follow a sun distribution, denoted
as θ ∼ SUNq,h(ξ,Ω,∆,γ,Γ ), if its density function can be expressed as:

ϕq(θ − ξ;Ω)
Φh

(
γ +∆⊺Ω̄−1ω−1(θ − ξ);Γ−∆⊺Ω̄−1∆

)
Φh(γ;Γ )

,

where ϕq(θ − ξ;Ω) is the density function of a Gaussian distribution with 0
mean and covariance matrix Ω evaluated at θ − ξ, ω = (Ω ⊙ Iq)

1/2 is the
diagonal scale matrix, with ⊙ denoting the element-wise Hadamard product, and
Ω̄ = ω−1Ωω−1 is the corresponding correlation matrix. Additional details on
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sun distributions can be found in [5]. More specifically, taking Ω as in Section 1,
under model (1)–(2) the joint smoothing distribution has the form (see [2,3])

(θ1:n | y1:n) ∼ sunpn,n(0,Ω1:n|n,∆1:n|n,0,Γ1:n|n), (6)

with Ω1:n|n = Ω, ∆1:n|n = Ω̄ωD⊺s−1, Γ1:n|n = s−1(DΩD⊺ + In)s
−1, where D

is an n× pn block-diagonal matrix having block entries D[tt] = (2yt − 1)x⊺
t , t =

1, . . . , n, s = [(DΩD⊺+In)⊙In]
1/2, In defines the n-dimensional identity matrix.

Leveraging on (6) and the additive representation of the sun [5], one can establish
a probabilistic characterization that facilitates the generation of independent
and identically distributed (i.i.d.) samples from the smoothing distribution. The
characterization is as follows:

(θ1:n | y1:n)
d
= ω1:n|n(U0 1:n|n +∆1:n|nΓ

−1
1:n|nU1 1:n|n),

where U0 1:n|n ∼ Npn(0, Ω̄1:n|n − ∆1:n|nΓ
−1
1:n|n∆

⊺
1:n|n), while U1 1:n|n is dis-

tributed according to a truncated Nn(0,Γ1:n|n) with lower truncation at 0. Based
on this representation, one can develop an i.i.d. sampler where the most com-
putationally intensive task is sampling from an n-variate truncated Gaussian
distribution. However, despite recent advances [9] enabling efficient simulation
for small-to-moderate time series (i.e., with n in the order of a few hundred), this
i.i.d. sampler may become impractical for longer time series due to such computa-
tional constraints arising from the multivariate truncated Gaussian component.

To overcome this issue, [3] developed a partially-factorized variational Bayes
(pfm-vb) approximation of the smoothing distribution where, adapting [10] to
the dynamic setting, the multivariate truncated Gaussian component is replaced
by n independent univariate truncated Gaussian terms. This leads to remarkable
computational gains and great accuracy. Here, motivated by the overall improved
accuracy of ep [11,12], we propose an efficient and accurate ep algorithm for the
smoothing distribution of model (1)-(2). Our approach adapts to the dynamic
probit setting techniques developed by [11] and further specified to the static
probit in [13].

3 Expectation propagation (EP) for the dynamic probit

As clarified in Section 2, dealing with the sunpn,n smoothing distribution for
model (1)-(2) may become computationally intractable in scenarios where n is
not small-to-moderate. As anticipated, the computational issues arise from the
fact that sampling from such distribution requires sampling from an n-variate
truncated normal and similar problems are faced when computing moments.
Consistently, computational methods which are able to provide a good approxi-
mation of the smoothing distribution at a much lower computational time may
provide a preferable alternative. In line with this goal, we derive the expectation
propagation (ep) routine [7,14] for the dynamic probit model (1)-(2), by speci-
fying more general results obtained for a wide class of models in [11] and adapt-
ing computations done for the static probit model in [13]. Section 3.1 presents
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how one can leverage results on multivariate extended skew-normal distributions
(sn) to obtain the equations for the ep updates. The resulting approximation is
computable at a much lower cost than sampling from the exact smoothing dis-
tribution. Nevertheless, it requires matrices manipulation of dimension pn× pn
within each iteration, which may be computationally inefficient. We thus show in
Section 3.2 how the ep routine can be implemented avoiding such direct matrix
computations, by storing and updating only lower-dimensional parameters. This
results in sensible computational gains.

3.1 Implementation without pn × pn matrix inversions

The goal of expectation propagation (ep) is to approximate the smoothing
distribution p(θ1:n | y1:n) with an approximating distribution having density
q(θ1:n) ∝

∏n
t=0 qt(θ1:n), whose factorization reflects the form of the smooth-

ing distribution (5). Differently from (5), in order to have a tractable approx-
imating distribution, all the qt’s, t = 0, . . . , n, are Gaussian densities hav-
ing form qt(θ1:n) ∝ exp

(
− 1

2θ
⊺
1:nQtθ1:n + θ⊺

1:nrt
)
for t = 1, . . . , n. As a con-

sequence, the resulting ep approximating density will be Gaussian too, with
q(θ1:n) = ϕp(θ1:n −Q−1r,Q−1), having set r =

∑n
t=0 rt, Q =

∑n
t=0 Qt. Recall-

ing the analogy between the factorization of q(θ1:n) and (5), the parameters for
the factor, or site, 0 are set to r0 = 0 and Q0 = Ω−1 and kept constant through-
out the algorithm, so that q0(θ1:n) matches the prior distribution. On the other
hand, the parameters rt and Qt for each site t = 1, . . . , n are iteratively updated
so that, keeping the parameters for the other sites fixed, the first two moments
of the global approximation q(θ1:n) match the ones of the hybrid distribution

ht(θ1:n) ∝ p(yt | θ1:n)
∏
j ̸=t

qj(θ1:n) = Φ((2yt − 1)x̃⊺
t θ1:n)

∏
j ̸=t

qj(θ1:n). (7)

The moments of q(θ1:n) are immediate, being q(θ1:n) Gaussian, while the ones
of ht(θ1:n) are also straightforward to compute, after noticing that it coincides
with the kernel of an snp(ξi,Ωi,αi, τi) ([15]) with

ξt = Q−1
−t r−t, Ωt = Q−1

−t , αt = (2yt − 1)ωtx̃t,

τt = (2yt − 1)(1 + x̃⊺
tΩtx̃t)

−1/2x̃⊺
t ξt,

with Q−t =
∑

j ̸=t Qj = Q−Qt, r−t =
∑

j ̸=t rj = r−rt and ωt = (Ωt ⊙ Ipn)
1/2

.
The moments of such distribution are then given by Equations (5.71) and (5.72)
in [15]. Calling ζ1(x) = ϕ(x)/Φ(x) and ζ2(x) = −ζ1(x)

2 − xζ1(x), they equal

µht
= Eht(θ1:n)[θ1:n] = ξt + ζ1(τt)stΩtx̃t

Σht
= varht(θ1:n)[θ1:n] = Ωt + ζ2(τt)s

2
tΩtx̃tx̃

⊺
tΩt,

with st = (2yt − 1)(1+ x̃⊺
tΩtx̃t)

−1/2. In ep, at each iteration the parameters for
rt and Qt of each site t = 1, . . . , n are updated so that the ep moment matching
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Algorithm 1: ep for dynamic probit - no pn× pn matrix inversions

Initialization: Q−1 = Ω; r = 0; kt = 0 and mt = 0 for t = 1, . . . , n.
for s from 1 until convergence do

for t from 1 to n do
r−t = r−mtx̃t

Ωt = Q−1 + kt/
(
1− ktx̃

⊺
tQ

−1x̃t

)
Q−1x̃tx̃

⊺
tQ

−1

st = (2yt − 1)(1 + x̃⊺
tΩtx̃t)

−1/2

τt = stx̃
⊺
tΩt r−t

kt = −ζ2(τt)/ (1 + x̃⊺
tΩtx̃t + ζ2(τt)x̃

⊺
tΩtx̃t)

mt = ζ1(τt)st + ktx̃
⊺
tΩtr−t + ktζ1(τt)stx̃

⊺
tΩtx̃t

r = r−t +mtx̃t

Q−1 = Ωt + ζ2(τt)s
2
tΩtx̃tx̃

⊺
tΩt

Output: q(θ1:n) = ϕp(θ1:n −Q−1r;Q−1)

conditions {
(Q−t +Qnew

t )
−1

(r−i + rnewt ) = µht

(Q−t +Qnew
t )

−1
= Σht

,

are satisfied by the updated parameters rnewt and Qnew
t . This translates into{

rnewt = (Q−t +Qnew
t )µht

− r−t

Qnew
t = Σ−1

ht
−Q−t.

Adapting the derivations in [13], where results for a broader class of models
reported in [11] are specified for the classical probit model, the application of
Woodbury’s identity to Σ−1

ht
and some algebra lead to the equalities

Qnew
t = knewt x̃tx̃

⊺
t , rnewt = mnew

t x̃t,

with knewt = −ζ2(τt)/ (1 + x̃⊺
tΩtx̃t + ζ2(τt)x̃

⊺
tΩtx̃t) and mnew

t = ζ1(τi)st +
knewt x̃⊺

tΩtr−i + knewt ζ1(τt)stx̃
⊺
tΩtx̃t. Thus, the updates of the multidimensional

parameters rt andQt are fully determined by the updates of the scalar quantities
kt and mt, t = 1, . . . , n. These are usually initialized to zero so that the initial
ep approximation q(θ1:n) coincides with the prior distribution for θ1:n. In order
to be able to implement the updates of kt and mt, t = 1, . . . , n, one needs
to compute Ωt = Q−1

−t . This can be done by avoiding direct matrix inversions
during the iterations, exploiting Woodbury’s identity. Indeed, it holds

Ωt = Q−1
−i = (Q− ktx̃tx̃

⊺
t )

−1
= Q−1 +

kt
1− ktx

⊺
tQ

−1x̃t
Q−1x̃tx̃

⊺
tQ

−1,

with Q−1 computed explicitly in the precomputation step and then updated at
each step after the site-specific parameters are computed, exploiting the equal-
ity (Qnew)−1 = (Q−t +Qnew

t )−1 = Σht
= Ωt + ζ2(τt)s

2
tΩtx̃tx̃

⊺
tΩt. The results

presented above form the ep implementation presented in Algorithm 1. Such
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implementation does not involve direct matrix inversions across iterations. Nev-
ertheless, it requires storing, updating and multiplying the pn× pn-dimensional
matrices Ωt, t = 1, . . . , n, and Q−1. This may result inefficient when either p or
n (or both) are large. We then show in Section 3.2 how the ep routine can be
implemented without storing and manipulating such pn × pn-dimensional ma-
trices, but only lower dimensional ones, leveraging on results developed in [11]
for a broad class of models and specified to the static Bayesian probit model in
[13].

3.2 Implementation without pn × pn matrix updates

As shown in Section 3.1, the parameters rt and Qt, t = 1, . . . , n, are fully char-
acterized by the known vector x̃t and the scalar quantities kt and mt, which
are iteratively updated in the ep algorithm. A close inspection of Algorithm 1
shows that the quantities Q−1 and Ωt, t = 1, . . . , n, are not explicitly needed to
perform such updates, but it is enough to store and update the pn-dimensional
vectors wt = Ωtx̃t = Q−1

−t x̃t and vt = Q−1x̃t, t = 1, . . . , n. Thus, in order to
be able to implement the ep routine in terms of these quantities, their update
rules need to be derived and, most importantly, they must be computable in
an efficient way. We show here that they allow an efficient formulation, which
may make the new implementation preferable, from a computational point of
view, to Algorithm 1. Adapting the derivations in [13], applying Woodbury’s
identity to Q−1

−t = (Q − Qt)
−1, after some algebra one gets wt = dtvt, with

dt = (1−ktx̃
⊺
i vt)

−1. Thus, when updating the parameters for site t, t = 1, . . . , n,
wt can be computed immediately from vt. On the other hand, each time a site t
is updated also the ep covariance matrix Q−1 changes. Thus, at the end of the
update of each site t, all the vj ’s (not only vt) must be updated to reflect this

Algorithm 2: ep for dynamic probit - no pn× pn matrix inversions or updates

Initialization: r = 0; kt = 0 and mt = 0 for t = 1, . . . , n; V = [v1, . . . ,vn] = ΩX̃⊺.
for s from 1 until convergence do

for t from 1 to n do
wt = (1− ktx̃

⊺
tvt)

−1vt

r−t = r−mtx̃t

st = (2yt − 1)(1 + x̃⊺
twt)

−1/2

τt = stw
⊺
t r−t

knew
t = −ζ2(τt)/ (1 + x̃⊺

twt + ζ2(τt)x̃
⊺
twt)

mt = ζ1(τt)st + knew
t w⊺

t r−t + knew
t ζ1(τt)stx̃

⊺
twt

kt = knew
t

r = r−t +mtx̃t

V = V − vt [(k
new
t − kt)/ (1 + (knew

t − kt)x̃
⊺
tvt)] x̃

⊺
tV

Q−1 = Ω −VKX̃Ω

Output: q(θ1:n) = ϕp(θ1:n −Q−1r;Q−1)
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change. After some algebra, exploiting again Woodbury’s identity, one gets

vnew
j = (Qnew)−1x̃j = (Q−Qt +Qnew

t )−1x̃j = [Q+ (knewt − kt)x̃tx̃
⊺
t ]

−1x̃j

= [Q−1 − (knewt − kt)[1 + (knewt − kt)x̃
⊺
tQ

−1x̃t]
−1Q−1x̃tx̃

⊺
tQ

−1]x̃j

= Q−1x̃j − [(knewt − kt)
−1 + x̃⊺

t vt]
−1vtx̃

⊺
t vj = vj − ct(x̃

⊺
t vj)vt,

where ct = (knewt −kt)/(1+ (knewt −kt)x̃
⊺
t vt). Storing the vj ’s in the pn×n ma-

trix V = [v1,v2, . . . ,vn], these updates translate in the matrix update Vnew =
V − ctvtx̃

⊺
tV. Finally, after the algorithm has converged, one has to derive the

form of the ep covariance matrix Q−1 from the quantities used in the updates.

It holds Q−1 =
(∑n

t=0 Qt

)−1
=

(
Ω−1 +

∑n
t=1 Qt

)−1
=

(
Ω−1 + X̃⊺KX̃

)−1
,

having defined X̃ = (x̃1, . . . , x̃n)
⊺ and K = diag(k1, . . . , kn). Consequently, call-

ing Λ = (In +KX̃ΩX̃⊺)−1, exploiting Woodbury’s identity, it trivially follows
that Q−1 = Ω − ΩX̃⊺ΛKX̃Ω. From this, one has V = Q−1X̃⊺ = ΩX̃⊺[In −
ΛKX̃ΩX̃⊺] = ΩX̃⊺Λ[Λ−1 −KX̃ΩX̃⊺] = ΩX̃⊺Λ so that Q−1 = Ω −VKX̃Ω,
showing that Q−1 can be computed without any direct matrix inversion. Algo-
rithm 2 reports all the steps needed to perform such efficient ep implementation.

3.3 Computational costs

Calling p̃ the total number of parameters, [11] and [13] noted that, in the case of
static probit regression, the cost of each ep update for the corresponding versions
of Algorithm 1 and 2 scales as O(np̃2) and O(n2p̃), respectively. Adapting those
derivations to the current dynamic setting, where p̃ = pn, one obtains that the
cost of each ep update for Algorithms 1 and 2 scales respectively as O(n3p2) and
O(n3p), making the latter always more efficient, differently from the static case,
where Algorithm 2 becomes advantageous only in high-dimensional scenarios,
with p > n. The same consideration holds true even accounting for operations
required to initialize and conclude the main ep routines. Calling Nep the number
of iterations needed to reach convergence, it is straightforward to show that
Algorithms 1 and 2 scale respectively as O(n3p2Nep) = O(n3p(p · Nep)) and
O(n3p(p+Nep)). This result makes our contribution even more significant, as the
proposed ep implementation leads to computational improvements regardless of
being applied to high-dimensional data xt or not. Finally, it is worth mentioning
that the sparse nature of x̃t allows us to further reduce the computational costs of
different steps in Algorithms 1 and 2. Albeit reducing the number of maximum-
cost operations, this does not alter the overall scaling of the ep routines.

4 Financial illustration

We demonstrate the performance of the ep approximation, derived in Section 3
in a financial application that was previously used in [3] for comparisons of some
state-of-the-art algorithms to approximate the smoothing distribution (6). More
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Fig. 1. E[θ1:n | y1:n] ( ) and E[θ1:n | y1:n] ±
√

var[θ1:n | y1:n] ( ) for the i.i.d.
sampler (iid) and the ep, pfm-vb and mf-vb approximations.

precisely, we consider a dynamic probit regression for the daily opening directions
of the French cac40 stock market index, spanning from January 4th, 2018, to
December 28th, 2018, comprising a total of n = 241 observations. In this study,
the binary response variable yt is defined as 1 if the opening value of the cac40
on the day t exceeds the corresponding closing value from the previous day
and 0 otherwise. We incorporate two covariates: the intercept and the opening
direction of the nikkei225, treated as a binary covariate and denoted as ξt. As
the Japanese market opens before the French one, ξt is available prior to yt,
making it a valid predictor for each day t. Therefore, in reference to model (1)-
(2), we have p = 2 and xt = (1, ξt)

⊺. Additionally, we set Wt = diag(0.01, 0.01)
for all t and P0 = diag(3, 3). Detailed information about the hyperparameters’
setting can be found in [2].

Inference about the smoothing distribution (6) is conducted using as bench-
mark the results arising from 104 samples from the i.i.d. sampler in [2]. We
then compare the accuracy of three approximate methods in recovering func-
tionals of interest of the smoothing distribution. More precisely, we consider
the ep approximation implemented as in Algorithm 2, the pfm-vb introduced
in [3] briefly described in Section 2, and a mean-field variational Bayes (mf-
vb) approximation which adapts [16] to the dynamic setting. These results are
illustrated in Figure 1, where we plot E[θ1:n | y1:n] and the bands E[θ1:n |
y1:n] ±

√
var[θ1:n | y1:n]. It can be seen that, although all approximate meth-

ods reach a reasonable accuracy, mf-vb shows some over-shrinkage of posterior
moments towards zero, while ep is slightly more precise than pfm-vb. This is
made clearer in Figure 2, where we show the boxplots of the differences between
the smoothing means E[θj1 | y1:n], . . . ,E[θjn | y1:n] and log standard devia-

tions log
(√

var[θj1 | y1:n]
)
, . . . , log

(√
var[θjn | y1:n]

)
, j = 1, 2, obtained via

the i.i.d. sampler and the ones resulting from the approximate methods. From
there, the above-mentioned over-shrinkage of the mf-vb approximation is im-
mediate to notice, while the improvements of ep over pfm-vb are also clarified.
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Fig. 2. Boxplot of the differences of the E[θj1 | y1:n], . . . ,E[θjn | y1:n] and

log
(√

var[θj1 | y1:n]
)
, . . . , log

(√
var[θjn | y1:n]

)
, j = 1, 2, obtained with the ep the

pfm-vb, and the mf-vb solutions, using the inferences obtained via i.i.d. sampling from
the exact sun as benchmark.

Finally, we note that the approximated methods enable the computation of the
desired moments in less than half a second (on a MacBook Pro 14-inch, 2023
the ep takes 0.43 secs, the pfm-vb takes 0.27 secs, and the mf-vb takes 0.20
secs). In contrast, the i.i.d. sampler requires a significantly longer time of 36.28
seconds. Code for reproducing all the results can be accessed at the following
link: https://github.com/augustofasano/Dynamic-Probit-EP.

5 Discussion

In this contribution, we have shown how ep can be effectively used to perform
approximate inference for the smoothing distribution in dynamic probit models.
The ep Gaussian approximation of the smoothing distribution allows estimating
functionals of interest with computational times that are orders of magnitude
smaller than the ones of exact sampling methods. We have shown in a financial
application that the ep approximate moments come with great accuracy, despite
being endowed with fewer theoretical guarantees than alternative approximation
schemes [10], This is in line with recent literature about models for partially-
observed Gaussian variables [11,12,13], where ep was empirically shown to lead
to accurate approximations of posterior quantities of interest. Such results con-
stitute empirical guarantees about the use of ep as an approximate method
for Bayesian inference and could motivate future research on further theoretical
guarantees.

https://github.com/augustofasano/Dynamic-Probit-EP
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